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Abstract. In this paper, we discuss the time evolution of a one-dimensional supersymmetric 
quantum mechanical system, in which the supersymmetry is broken by an additional 
potential. The potentials under consideration belong to a special class and can be in general 
time dependent. We analyse the special case of time-independent potentials and have used 
the Jaynes-Cummings model in quantum optics as a simple example in our analysis. For 
the time dependent potentials, we use the basic evolution operator technique developed 
by C M Cheng and P C W Fung and present a way in which to treat such problems. 

1. Introduction 

The symmetric nature of a quantum system is manifested by the invariant property of 
the Hamiltonian under the transformation representing the symmetry group, such that 

where ii is a generator of the transformation. 
However, in real situations, the symmetry of a physical system is always broken 

by an additional potential so that the symmetry of the system is reduced. The 
Hamiltonian is no longer invariant under transformation in this case: 

Supersymmetric quantum mechanics was first proposed by Witten [l] in 1981. The 
supersymmetric properties [ 1-41, the conditions for spontaneous breaking [ 1,3,5] and 
the applications [6-91 have been studied for the last ten years. However, the breaking 
of the supersymmetry by an additional potential, which becomes the theme of our 
paper, was seldom discussed. 

In section 2, we will review supersymmetric quantum mechanics briefly and describe 
the irreducible subspaces: bo (one-dimensional) and bi (two-dimensional). 

In section 3, we will start our discussions on symmetry breaking. The potentials 
considered belong to a class in which the potentials only cause the transitions among 
the states confined within each irreducible subspace (bo or bi). In this case the potentials 
are well defined in each subspaces (bo or bi) and can be expressed in terms of the 
normalized supercharge operators constructed. Here the potentials are time indepen- 
dent and we will find the expectation value of any observable which has eigenstates 
which are also the eigenstates of the supersymmetric Hamiltonian 2 (unbroken). 
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In section 4 we will give examples to illustrate our results, derived in section 3. 
The system under consideration is the well known Jaynes-Cummings model [lo] in 
quantum optics. We will discuss two differe;t forms of potentials and then evaluate 
the expectation values of the spin operator S 3 .  

Section 5 is devoted to obtaining the evolution operator according to the technique 
presented in [ 113. The time-dependent wavefunction of the system can be derived if 
specifications of the system are given. 

Section 6 is the conclusion, and some discussion will be given. 

2. Supersymmetric quantum mechanics 

We first review one-dimensional supersymmetric quantum mechanics. The superalgebra 
involved [l,  21 is given by 

{ Oi, Q} = 2 4 %  [d', & ] = O  (2.1) 

6 = +tol - io2 )  ( j+=+(01+i02) .  (2.2) 

where i , j  = 1 or 2 and the dj  are the supercharge operators. Define the supersymmetric 
ladder operators: 

In fact, the supercharge operators Gj and the supersymmetric ladder operators 6 and 
6' can be written in the form 

(2.3a) 

(2.3b) 

where A- is a linear differential operator and A+ is the adjoint. The Hamiltonian 2%' 
can then be written as 

(2.4) 

Now we denote the set consisting of all the normalized orthogonal eigenstates with 
non-zero eigenvalues of 8, by {I$:)}, so that 

fill$;) = E'I$I) with E'>O (2.6) 

(*;I$;) = 6, where i , j = 1 , 2  , . . . .  (2.7) 

It can be shown that the state A-l$i) is an eigenstate of f i 2  with the same eigenvalue 
( E ' )  as I$;): 

&A-l$;) = A-A+A-l$;) 
= A-fi,l$;) 
= EiA-1$;)* 
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Generally, A-/$;) is not normalized. The corresponding normalized eigenstate of f i 2  
with eigenvalue E '  is 

I$:)= ( E ' ) - " 2 A - l $ i )  ( 2 . 9 )  

( $ i l A + k l $ i )  = E ' .  ( 2 . 1 0 )  

since 

Conversely, (4; )  can be written as 
I$;) = ( E  i)-''2A+l$i), (2 .11)  

Hence, for any element (11);)) in {11)1)}, we can construct a normalized eigenstate 
of f i 2  denoted by I$;). Both states should have same eigenvalue: E '  > 0. By collecting 
all I$;), we have a set of all normalized orthogonal eigenstates of fi2 with non-zero 
eigenvalues: {I$;)}. Such that 

($;I$;) = (E ' ) - ' ' 2 (  EJ)- ' /2($~lA'A-I$'J  

= ( E ' ) - ~ / ~ ( E J ) ' / ~ ( $ ; ~ $ J ~ )  

= 6,. (2 .12)  
Furthermore, we can construct a pair of orthogonal normalized states which are 

eigenstates of k with non-zero eigenvalue ( E ' ) :  

The states in 

( 2 . 1 3 ~ )  

( 2 . 1 3 b )  ( I $2 ): 
( 2 . 1 3 ~ )  and ( 2 . 1 3 6 )  can be transformed into each other: 

(It)) = ( E ' ) - 1 / 2 6 + (  2 )  ) 
( h,) = ( E ' ) - ' I2  6 ( I "0;) 

k( I*;) ' ) = E ' (  I+;> ). 

( 2 . 1 4 ~ 1 )  

( 2 . 1 4 b )  

Hence, the two-dimensional subspace bi spanned by 

('"0:) (,;J 
carries an irreducible representation of the supersymmetry. 

The remaining subject that we want to discuss is the states with zero energy. It can 
be shown that the Hamiltonians fi, and f i 2  can never have normalizable eigenstates 
with zero eigenvalue si?ultaneously [ 2 ] .  Hence, the only possible normalized zero- 
energy ground state of %' is either in the form 

( 2 . 1 5 ~ )  

or in the form 

but not both. 

(2.1 5 b )  
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So the zero-energy ground state of 2 spans a one-dimensional subspace $, that 
carries the irreducibje repre2entation of the supersymmetry. It should be noted that in 
the case that both HI and H2 can have no normalizable zero-energy ground state, the 
supersymmetry is said to be spontaneously broken [l, 3,5]. 

3. Supersymmetry broken by a time-independent potential 

In this section we discuss a one-dimensional quanLum system in which the supersym- 
metry is broken by a time-independent potential V. The Hamiltonian now becomes 

8=2+ t  (3.1) 

The potential we considered is restricted to a class of potentials that only cause 
transitions to occur among the states confined within an individual subspace (hi  or 
bo). The transitions between the states in different subspaces are forbidden. H y c e  the 
potential p is well defined in each subspace. It is elementary to show that V (when 
defined in a two-dimensional subspace, say with j 2 1) can be expressed in the form 

Q =  A , ~ + c  A,Q, where i = 1,2 or 3. 
i 

In the above expression, i is the identity operator, A. and Ai are real numbers and 
may not be the same in different subspaces. Then $i are the normalized supercharge 
operators defined in the subspace bj ( j  3 1) by 

61 

A d2 

=- 

I - 

q2 = - 
(Ei)1/2 

(3.3a) 

(3.3b) 

ij3 = iG2Gl (3.3c) 

{Gi, 4jl= 2Sij (3.4) 

[ $i 3 4*j] = 2i &ijk q*k. (3.5) 

and it can easily be shown that the operators ii satisfy the Clifford algebra: 

and also the su(2) algebra: 

We first confine our attention to a particular two-dimensional subspace bj .  By using 
the Heisenberg equation of motion on the normalized supercharge operators, we get 
(set h = 1) 

( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

After solving the above set of differential equations, we can obtain the time 
evolutions of the normalized supercharges: 

s * l ( t )  = [a:+(1 - a ; )  cos w t ] 4 , ( 0 )  

+[a la2 ( l  -cos w t ) + a ,  sin ~ t ] q * ~ ( O )  

+[a,a3(l  -cos ut)-a ,s in  ui]&(o) (3 .7a )  
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i 2 ( t ) = [ a , a 2 ( 1  -cos u t ) - a ,  sin w t ) i , ( o )  

+[a;+( l -a; )  cos wf]q*2(0) 

+[a2a3(1-cos w t ) + a l  sin w t ] i 3 ( 0 )  (3 .76 )  

4*3(t)=[a,a3(1-cos wt)+a2sinwt]$,(0) 

+ [ a2a3( 1 - cos ut) - a ,  sin wt](i2(0) 

+ [ a : +  (1 - a:)  cos wf] t j , (O)  

where ai = Ai/y,  y = (Xi (Ai)2)1’2 and w = 2y. 
Now we consider an arbitrary state I$) in the subspace b, denoted by 

(3.7c) 

The normalization requirement is relaxed in this stage (i.e. la l 2  + lp l 2  may not be equal 
to 1). The expectation values of the ii are then found to be 

( $ l ( i ( t ) l + ) =  B , + C ~  cos w t + D i  sin wt 

= Bi + Ei sin(wt + &) (3 .8)  
where 

B ,  = 2a: Re(a *p)+2a,a2  Im(a *p)+a la , ( la12- lp12)  

C, = 2(1 - a : )  Re(a * p )  -2a ,a2  Im(a * p )  - ~ , a , ( l a ) ~ -  Ip)’) 
D,  =2a, Im(a * p )  - a2(la12- 1 ~ 1 ’ )  
B2 = 2a,a2Re( a * p )  +2a: Im(a * p )  + a2a3()a12 - Ipl2) 
C2 = -2a,a2 Re(a * p )  +2(1 - a : )  Im(a * p )  - a2a3(la12-lp12) 

D2 = -2a3 Re(a * p )  + a,(la12- Ipl’) 
B, = 2a,a3 Re( a * p)+2a2a3 Im(a * p )  + a:( (a12-p(2)  

C3 = -2a,a3 Re(a * p )  - 2a2a3 Im( a * p )  + (1 - a:)(la12 - (P I2)  
D3 = 2a2 Re(a * p )  -2a,  Im(a * p )  
Ei = [( C i ) 2 +  (Di)2]1’2 

q$ =tan-’( C i / D i ) .  

It can be shown that any observable (6) which is well defined in bj ,  such that its 
eigenstates are also the eigenstates of the supersymmetric Hamiltonian k, can be 
expressed in the form 

6( t )  = b o j + x  b,q*,( t )  
I 

(3.9) 

where bo and bi are real numbers which may be different in different subspac: bj.  A 
typical example of this kind of observable is the supersymmetric Hamiltonian X itself. 

so 
( CL Id( t )  I CL) = bo + c hi($ I ii ( t)I IL) 

I 

=d+B sin(wt-t.9). (3.10) 
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The last step in (3.10) is obtained by using (3.8) and the parameters involved are 

If we do not confine ourselves in the subspace hj ,  we can consider an arbitrary 
normalized state I@) of the supersymmetric system: 

= aol+o)+C MJ) .  (3.11) 
j 

Without loss of generality, we assume the zero-energy ground state of %’ is 

and the states I&), I&) are 

141)= aolJ /?)+C a J l + \ )  
J 

and 14’) = E, P,I+;) with j = 1 , 2 , .  . . . We also denote 

(; 1;;;) 
by 14’) to specify the fact that it belongs to the subspace h,. Moreover, I@) is normalized, 
so that 

l a o 1 2 + x  (Ia,12+lPJ12) = 1 *  (3.12) 
J 

The expectation value of 6 becomes 

(3.13) 

where 6 is the eigenvalue of 8 when it operates on /$to) and the summation is obtained 
by using (3.10).  

Equation (3.13) gives us the expectation value of any observable which shares the 
eigenstates with the supersymmetric Hamiltonian 2. 

4. Examples 

In this section we apply our results in the last section to the well known Jaynes- 
Cummings model [lo] in quantum optics. 

Firstly, the form of Hamiltonian we adopt here is [12] 

fi,, = &‘a^+ &+A[S+(I*+ 9-&’]. (4.1) 



Evolution of a quantum system with broken supersymmetry 4857 

The system described by (4.1) can be considered to be a two-level system (e.g. a spin-; 
particle in a static magnetic field) which interacts with a radiation field. The operator 
notations appearing in (4.1) have their usual meanings and A is the coupling constant. 

The Hamiltonian H,, can be decomposed into two paps: the supepymmTtri: 
Hamiltonian 2 and the applied time-independent potential V. Therefore H,, = %'+ V 
with $' and given by 

2 = 6 + 6 + $ , + t i  (4.2) 

Q = -ti + A (3+6 + 3-6') (4.3) 
where 1 is the identity operator. 

We can also find out the expressions of the supercharges and supersymmetric ladder 
operators defined in section 2: 

O1 = 3+6 + L a '  ( 4 . 4 ~ )  

Q2=-i(3+6-3-2') (4.4b) 

6 = 3-6' 6' = 3+a* (4.4c) 

&In, m ) = ( n + m + f ) l n ,  m ) .  (4.5) 

An energy eigenstate of 2 is represented by In, m )  where n is the eigenvalue of 
2'6 and m is the eigenvalue of g 3 ,  Hence 

It should be noted that n can be any non-negative integer and m can only be either f 
or - 2 .  

It is obvious that the states Ik - 1,  f) and lk, - f )  ( k  3 1)  have the same energy 
eigenvalue ( k )  and hence span an irreducible subspace (say bk) mentioned in the last 
two sections. 

By restriction of our attention to bk as stated in section 3 ,  the parameters involved 
in (3.7a)-(3.7c) have their special forms: 

1 

a1 = 1 

y = Ak'I2 

a, = a3 = 0 

SO w = 2 y = 2Ak'". 

In the following we evaluate the expectation values of the operator j3 by using different 
initial states. 

(i) Simultaneous eigenstates of i t a *  and S3. The simultaneous eigenstates of 6'6 
and 9, are denoted by I k - 1, f) and lk, -f) .  By using (3.10) and the fact that g3( t )  = 4G3( t )  
(by setting h = l ) ,  we get 

This result represents the well known Rabi oscillations. 
(ii) Coherent state. We now consider a state 14) which is an eigenstate of & (with 

eigenvalue -f) but not the operator ;+a*. The radiation field considered after (4.1) is 
in coherent state, such that 

14) = 1z)l-t) 
where 12) is the coherent state of radiation defined as 

(4.9) 

(4.10) 
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where 1ZI2= A (mean of the photon number n )  and In) is the number state of the 
radiation field. 

By using (3.13) and (4.8), we have the expectation value of i 3 ( t )  as 
m f i n  

n . (4li3(t)14)= -fexp(-A) 1 ycos(2An’”t) .  (4.1 1) 

Thus, by using the supersymmetric property of the system, we can obtain a result 
identical to that derived using conventional quantum mechanical methods. Moreover, 
the infinite series in (4.11) has not been evaluated in closed form, but an approximated 
expression was obtained [ 131. 

Secondly, we would like to consider the modified Hamiltonian of the Jaynes- 
Cummings model discussed in [12]: 

2 = a * i a * + s ^ 3 + A [ i + I ? + k I ? f ]  (4.12) 

where I? = a* (a* ta * ) ’ / 2  and I?’= (a*ta*)1’26t. 
The Hamilionian 2 can also be decomposed into two parts: the supersymmetri? 

Hamiltonian X (same as that in (4.2)) and the applied time-independent potential V 
given by 

(4.13) 

The system under consideration is similar to that described by (4.1), but that the 
interaction between the two-level system and the radiation field is intensity dependent. 

Now the parameters involved in (3.7a)-(3.7c) are then found to be 

a , = l  a, = a3 = 0 (4.14) 

y = A k  SO w = 2y = 2Ak (4.15) 

Employing the simultaneous eigenstates of 6’6 and 9, as initial states, we have 

? = - fi + A [.!?+I? + i-l?’]. 

( k s  1) 

( k - 1, 4123  ( t ) I k - 1, &) = -( k, - f 1 S 3 (  t ) 1 k, - i) 
= 5 cos(2Akt). 

Moreover, as we use the state 14) defined in (4.9), we have 

(4.16) 

JC f i n  

n=O n! 
( 4 1 3 3 ( f ) l ~ ) =  -fexp(-A) 1 -cos(2Ant). (4.17) 

It is noted that equation (4.17) is an infinite sum of cosine functions, like equation 
(4.11). But the oscillation frequencies involved in (4.17) (proportional to n )  are different 
from those in (4.11) (proportional to n”’). The expression in (4.17) can hence be 
summed easily to give [12]: 

(4.18) 
Equation (4.18) gives us an explicit form for the expectation value of 9, at any time 1. 

(+133(t)14)= - 4  exp[-2A sin2(At)] cos[A sin(2At)l. 

5. Supersymmetry broken by a time-dependent potential 

In this section we consider a one-dimensional supersymmetric quantum system in 
which the supersymmetry is broken by a time-dependent potential. The potential 
considered is in the same class as well as that considered in section 3. 
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Since the transitions are only possible among the states confined in individual 
irreducible subspaces hi ( i  2 1)  or bo, we first restrict our study to a particular two- 
dimensional subspace bj ( j  3 1). 

Similar to that mentioned in the time-independent case, a time-dependent potential 
(defined in b j )  can be expressed as 

Q ( t > =  c , ( t ) i + C  C i ( t ) i j i  
i 

where 1 is the identity operator and i = 1, 2 or 3 .  In (5.1), co( t )  and c i ( t )  are real-valued 
functions of time rather than the real numbers taken in (3.2) and may be different in 
different subspaces. 

The Hamiltonian 2 that describes this system is then given by 

ri( t )  = 2+ O( t )  
( 5 .2 )  

where 2 is the supersymmetric Hamiltonian and 

Now we consider the evolution equation: 

(5.3) 

where G(t ,  0) is the evolution operator of the system. Then we assume that G,(?, 0) 
can be decomposed into 

Q( t ,  0) = ay t, 0) Go( t, 0) (5.4) 

where fif( t ,  0) is the solution of 

( 5 . 5 )  
a 
a t  

? ( t )  f i ' ( t ,  0) = i - 3 ( t ,  0). 

f i , ( t ,O)  can be determined by substitution of (5.4) into (5.3) and found to be the 
solution of 

so that 

eo(?, 0) =exp [ - i (  &t+ 1 lof co (u )  du)]  

= exp [ -i ( E' t + lo' co( U ) d U ) ]  f 

(Note that 

and the important operator is I?( t ,  0). 

= E']$')  for any state in the Hilbert space I),.) 
Hence CO( t ,  0) only contributes an unimportant phase factor to the wavefunction 
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We have recalled that the operators ii satisfy the Clifford and su(2) algebra. Thus 
they are the generators of SU(2) and then fit( t, 0) can be found by the technique 
presented recently Ell]. We now treat the problem parallel to that in [ll] with only a 
slight modification. 

We first rewrite the potential e’(?) in the form 

e’(?) = d l ( t ) q ^ + + d 2 ( t ) ( 3 + d 3 ( t ) ~ -  (5.7) 
where 

+ - 2  - q -  41+ii$2) 8- = +( & - i&) 

d , ( t )=  cl(t)-ic2(f)  dZ(f) = c3(t) 
d3(t)= cl(f)+ic2(f). 

As mentioned in [ 111, the operator fit( t, 0) can be expressed in the following form: 

fi’( t, 0) = exp(gl( )8+) exp(gZ( 183) exp(g3( )8-)* (5.8) 
By substituting (5.8) into (5.5) and comparing the coefficients on both sides, we find 
that the gi(t)  can be determined by solving a set of differential equations: 

(5.9a) 

(5.9b) 

=fXr) exP(2gz(t)) (5.9c) 

with the initial conditions 

gi(0) = 0 for i = 1,2, or 3. (5.10) 
The fk( t )  are given by 

h(t) = dk(t)/i for k = 1,2 or 3. (5.11) 

The most important part among (5.9a)-(5.9c) is (5.9a), which is in the form of the 
Riccati equation. Once it is solved, the other two equations can be solved readily: 

(5.12) 

(5.13) 

Let us assume that the gi( t )  have been found, the operator fit( t, 0) is then expressible 
as 

c l (  t, O) = exp(gl( )8+) exp(g2( t )83 )  exp(g3( )8-) 
= (1 +g , ( t ) i+ )  eXP(gz(t)83)(1+g3(f)q*-) 

exp(g2) + g1g2 exp(-gz) g1 exp(-gz) 
exp( -g*) 

(5.14) 

Relation (5.14) gives us the matrix form of fit( t, 0) and then the explicit form of the 
evolution operator ( t, 0) is 

@t,O)=exp -i E’?+ co(u)du [ ( lo‘ )I 
(5.15) 
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In view of expression (3.11), the time evolution of I@) is then given by 

I@W = aO/$o(f))+C 14”) 
J 

= a. exp(-icp)IGo(0))+C Q c ~ ,  o)Iv(o)). (5.16) 

Q( t, 0) are given by equation (5.15), and the phase factor exp( -icp) is due to the fact 
that I$o(0)) is an energy eigenstate of A defined in (5.2). 

J 

6. Conclusions 

In this paper we have carried out analysis of the time evolution of a quantum system 
in which the supersymmetry is broken by a potential belonging to a special class which 
can only cause transitions among the states confined within each irreducible subspace. 
In fact, if the Hamiltonian of the system has supersymmetric properties, we can only 
obtain information about ;he transitions confined within bo or bi but not the transitions 
among the eigenstates of HI or A2. Hence, the existence of supersymmetry in a system 
cannot help us to simplify the evolution problems involving the transitions among the 
eigenstates of A, or A,. 

In section 3 we have derived the time evolution of the expectation value of 
an arbitrary observable which shares its eigenstates with the supersymmetric 
Hamiltonian &. 

We have shown in section 4 that we can use the ‘supersymmetric technique’, 
developed in section 3, to arrive at the important results (4.11) and (4.17) of the 
Jaynes-Cummings model as that obtainable via conventional methods in quantum 
mechanics. 

In section 5, we have obtained the evolution operator for a general time-dependent 
potential. We can then derive the wavefunction if the system is specified. 
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